18 Apr
2019

Industrie Agro-alimentaire: Les vraies opportunités résident dans l'intelligence artificielle

L'intelligence artificielle fait progressivement son entrée dans l'industrie agroalimentaire et elle est définitivement là pour rester. Apprenez-en plus sur les opportunités découlant de l'investissement dans un avenir prometteur avec l'IA.

Artificial Intelligence
Smart Factory
Industrie Agro-alimentaire : Les vraies opportunités résident dans l'intelligence artificielle

Avec un taux de croissance annuel composé de 28,64% prévu entre 2018 et 2023 selon Mordor Intelligence, il est possible d'affirmer que l'intelligence artificielle affectera fortement le secteur des produits alimentaires et des boissons dans les années à venir. Sa prévalence peut s'expliquer par le fait que l'IA a un impact important sur deux domaines importants de l'industrie: la sécurité alimentaire et l'assurance de la qualité. Avec cette technologie, le machine learning est amélioré pour les ordinateurs avec une analyse de données constante, augmentant le degré de précision et l'efficacité des tâches qui seraient autrement accomplies par des humains.


Voici trois applications du machine learning dans l'industrie:

Surveillance efficace et efficiente en temps réel

Parmi les différentes techniques de surveillance, les capteurs intelligents permettent l’enregistrement des données et l’identification des domaines d’amélioration. Ils peuvent également contribuer à la prise de décisions critiques en matière de sécurité sanitaire des aliments et allant au-delà de leurs capacités de surveillance de la température, de l’humidité, de la pression et du temps. Les autres méthodes de surveillance utilisées sont la spectroscopie, les lasers, les rayons X et les caméras qui analysent les caractéristiques intrinsèques et extrinsèques de la production. Cela représente un énorme progrès par rapport aux systèmes de tri classiques. La procédure élaborée à partir de la séparation a été programmée de manière acceptable des produits rejetés en produits de tri en fonction de leur utilisation optimisée, en utilisant une prise de décision intuitive basée sur le meilleur rendement.

 

 

Traçabilité accrue

Pour exécuter correctement des interventions stratégiques de sécurité en cas de rappel, une grande quantité de données doit être collectée, interprétée et validée et les résultats doivent être partagés dans un minimum de temps. Grâce aux systèmes d'IA, les données historiques peuvent être comparées et utilisées pour prédire des événements potentiels sur plusieurs chronologies de différentes régions.

Amazon peut identifier un problème de sécurité alimentaire avant que le fabricant n’émette un rappel avec son système de traitement en langage naturel, qui surveille en permanence les commentaires des clients en analysant de nombreux courriels, appels téléphoniques, messages instantanés et plates-formes de médias sociaux.

Hygiène améliorée

L’assainissement automatisé s'accompagne de systèmes de nettoyage en place (Clean-in-Place), programmés pour nettoyer les équipements par cycles de temps. En limitant les interactions humaines avec un système autonettoyant, les risques de contamination croisée par des bactéries d'origine alimentaire sont considérablement réduits. L'Université de Nottingham collabore avec les experts en CIP, Martec of Whitwell, pour un projet de recherche pour un CIP auto-optimisé (Self-Optimizing CIP). Ce dernier serait mis en place de manière à ajuster les programmes de nettoyage en fonction de l'utilisation opérationnelle.

 

 

Accepter le changement et investir dans des initiatives d'amélioration continue seront essentiels pour les fabricants de produits alimentaires qui souhaitent rester à l'avant-garde. Le chercheur réputé d'intelligence artificielle Eliezer Yudkowsky a déclaré ce qui suit: "De loin, le plus grand danger de l'intelligence artificielle est que les gens concluent trop tôt qu'ils la comprennent."

 

Source: https://www.foodqualityandsafety.com/article/artificial-intelligence-a-real-opportunity-in-food-industry/

Want to learn more?
Download the ebook
Related blog articles

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
20
Août 2019

Partnership - The difference it makes!

English
1
Oct. 2021

Why the Food and Beverage Processing Industry Can’t Afford Incomplete Data

English
11
Fév 2021

Comment l'Industrie 4.0 a influencé la productivité dans l'industrie agroalimentaire

French

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
23
Janvier 2024

Optimisation des opérations à l'échelle de l'entreprise : analyse de données dans l'industrie manufacturière avec l’aide de Worximity

Découvrez comment Worximity transforme les opérations manufacturières en exploitant l'analyse des données en temps réel, apportant efficacité et innovation à l'Industrie 4.0 tout en responsabilisant les départements au-delà de la gestion de la production.

French
23
Janvier 2024

Optimizing Company-wide Operations: Data Analytics in the Manufacturing Industry With Worximity

Explore how Worximity is reshaping manufacturing by harnessing real-time data analytics, bringing efficiency and innovation to Industry 4.0 while empowering departments beyond production management.

English
9
Janvier 2024

Manufacturing Trends to Lookout for in 2024

As we look at manufacturing trends for 2024, pressure to stay on top of current trends and maintain competitiveness are at an all-time high

English