19 Jun
2019

5 First Steps Towards Artificial Intelligence

An article from the Harvard Business Review offers 5 first steps for companies that want to integrate artificial intelligence into their operations or products.

Artificial Intelligence
Industry 4.0
Smart Factory
Technology
IIoT
5 premiers pas vers l'intelligence artificielle

Harvard Business Review has published an article: "The 5 Things Your AI Unit Needs to Do" which presents 5 most successful initiatives to start your shift to AI.

According to the European Center for Strategic Innovation (ECSI), which has surveyed the most successful companies in their implementation of AI units, the first steps to take are:

  1. Scouting AI technology, applications, and partners. Companies must have in-house AI hunters who will identify innovations, key players and emerging companies that may become partners.
  2. Experimenting with AI technology and applications. By undertaking pilot projects that adapt well to the company's concrete projects, it is possible to quickly determine the best approach to implement. These can be AI initiatives developed by an internal team or partnerships with startups that have innovations adapted to the reality of the company
  3. Supporting business units in applying AI technology. The goal of integrating AI into an organization is to align it perfectly with business and business models. Teams of data scientists must work closely with operators to ensure that the developed AI contributes to the better turnover of operations.
  4. Getting the entire organization to understand AI. For the power of artificial intelligence to be fully expressed, AI leaders of the company must educate the entire team to be part of this shift. Employees need to understand the value of AI and leaders must ensure to keep the exchanges simple and concrete so as not to dull the interest of their colleagues whom might be less experienced. To do so, the company oughts to take a stand on the issue of artificial intelligence and clearly communicate its orientations to its troops. The human resources department has to address the issue of training and updating skills to ensure that teams are equipped for the AI shift.
  5. Attracting and retaining talent. Some companies will make business acquisitions with AI expertise that is perfectly suited to their field, while others will set up an internal IA department and recruit new talent and offer training to their employees who wish to develop their potential. in this avenue. The competition will be fierce with the massive rise of AI and the positioning of Montreal as a global AI pole.

 

HBR suggests that each organization or AI-driven team should position themselves on this spider-graph based on their context, goals and constraints. 

HBR_Chart_your_company_AI_Capabilities

To read HBR's full article on the topic, click here

 

 

Want to learn more?
Download the ebook
Related blog articles

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
13
Déc 2019

Comment les gestionnaires d'opérations embrassent l'Industrie 4.0

French
13
Août 2018

What are the Top AI Trends of 2018?

English
17
Oct 2019

La gestion manufacturière: le maestro de l'usine de production alimentaire

French

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
15
Nov 2023

Decoding the OEE Calculation: Translating OEE Metrics into Tangible Losses

The following OEE funnel is a great way to visualize how losses in availability, performance, and quality impact OEE and your throughput.

English
9
Nov 2023

Production Monitoring vs. MES: Choosing the Right Solution for Your Manufacturing Needs

Don't pay for what you don't need. Understand which software suits your needs best and unlock the potential of your manufacturing processes.

English
7
Nov 2023

Designing Software Products for Manufacturers: A Focus on Customer Needs

Dive into Worximity’s customer-centric approach to developing manufacturing software with a commitment to addressing real-world challenges.

English