1 Aug
2018

3 Factors to Consider When Choosing a Monitoring Solution

When looking at IoT and smart factory monitoring solutions for your food and beverage factory, consider factors that will be the most suitable to your factory's needs, set-up, and conditions. Here are 3 factors to consider.

Industry 4.0
Machine Monitoring
Smart Factory
IIoT
3 facteurs à prendre en compte lors du choix d'une solution de monitoring

When looking at smart factory monitoring and IoT solutions for your food and beverage factory, consider factors that will be the most suitable to your factory's needs, set-up, and conditions. No matter what, you want to spend more time on what matters: making better solutions. In the article, "Machine Monitoring and Analytics as a Path to Smart Manufacturing," Julie Fraser writes about industry insights and approaches that will make a difference.

Here are 3 factors to consider when choosing a monitoring solution

1. Scope 
 

If your factory has a well-established Enterprise Resource Planning (ERP) system in place, by adding a more focused machine monitoring system or Manufacturing Execution System (MES), you'll have a set-up that can be coordinated throughout your entire factory.   


But, if it's a considerable challenge to coordinate applications throughout your factory, implementing an ERP which includes MES and machine monitoring will offer reach and range of monitoring.

oee-machine-mointoring

Example: Overall Equipment Effectiveness is a standard for measuring overall efficiency of your equipment and a metric for identifying key problems and potential improvements that could be made. Track in real-time.

 

2. Smart & IoT 

 
If the path to smart manufacturing and IoT is on  your mind, consider whether you want a traditional on-premises solution or whether a cloud-based or SaaS solution such as machine metrics or propulsion would provide you the learning and IoT foundation you need to feel confident.

Smart manufacturing and IoT are not one-size-fits-all solutions. If you are considering these tools and methods, there are a variety of monitoring solutions to fit your needs and to move forward with confidence. Solutions can take a more traditional on-site form, be cloud-based, or SaaS based (e.g. Machine metrics or propulsion.)  

 
 

 

 

3. Report vs. Predict 

 

Some of the most powerful insights gained from machine monitoring comes from predictive analytics—data is drawn from backward-looking reporting and system insights. The ability to predict system events is key to continuous improvement.  

 

Want to learn more?
Download the ebook
Related blog articles

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
27
Mars 2020

Ce que vous devez savoir sur le monitoring de la production en 2020

French
17
septembre 2019

Types de gaspillages dans le lean manufacturing - le gaspillage dû à l'attente

French
10
septembre 2019

Types de gaspillage dans la production lean -  le gaspillage provenant des défauts de fabrication

French

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
31
Mai 2018

The Power of Artificial Intelligence in Manufacturing

The Manufacturer’s Annual Manufacturing Report 2018 found that 92% of senior manufacturing executives believe that ‘Smart Factory’ digital technologies – including Artificial Intelligence – will enable them to increase their productivity levels and empower staff to work smarter.

English
5
Juin 2018

Visualize the uses of AI and analytics with this interactive tool

McKinsey's interactive data visualization shows the potential value created by artificial intelligence and other analytics techniques for 19 industries and nine business functions.

English
4
Avril 2018

McKinsey - An executive’s guide to AI

McKinsey publised an online executive's guide to AI to cover the highlights of artificial intelligence: machine learning and deep learning.

English