3 Sep
2018

Measuring OEE - Overall Equipment Effectiveness

With these equations, it is easy to get at in-depth look at the various types of loss occurring a plant. Using OEE in conjunction with other techniques such as Total Process Management (TPM) can provide important actionable insights to improving manufacturing, and developing best practices.

Continuous Improvement
Lean Manufacturing
Measuring OEE - Overall Equipment Effectiveness

Overall Equipment Effectiveness (OEE) is a powerful tool used in Lean Manufacturing for determining sources of loss in a factory. However, the calculation of OEE KPIs is really very easy. By using a series of equations, a plant can take collected data and plug it into any metric desired. The difficult parts are collecting quality data, and making good decisions from the analysis.

The best possible OEE score is 100%. This is not physically possible due to laws of thermodynamics, but it serves as the symbol for what a perfectly lossless manufacturing operation would look like.

It is from there that percentages of loss are measured by various metrics, and calculated into a total.

Here’s how it’s done:

The Formulas of OEE    

The simplest way to calculate OEE goes as follows:

OEE = (Good Count x Ideal Cycle Time)/ Planned Production Time

Where

Good Count = Total Count – First Pass Rejects

and

Planned Production Time = Shift Length – Breaks

This method is a perfectly accurate calculation of OEE, but it does not track the individual losses of the Big Six Losses. This is there is the preferred formula for OEE.

The preferred formula is:

OEE = Availability Loss x Performance Loss x Quality Loss

Where each loss type receives a score out of 100% and which together make up the OEE.

The Formulas of Loss Factors

Availability

Availability Loss = Run Time/ Planned Production Time

Where

Run Time  = Planned Production Time – Stop Time

Performance

Production Loss  = (Ideal Cycle Time x Total Count)/ Run Time

This metric can also be calculated as

Production Loss  = (Total Count / Run Time)/ Ideal Run Rate

Where

Run Time = Planned Production Time – Down Time

Quality

Quality Loss = Good Count/ Total Count

With these equations, it is easy to get at in-depth look at the various types of loss occurring a plant. Using OEE in conjunction with other techniques such as Total Process Management (TPM) can provide important actionable insights to improving manufacturing, and developing best practices.

Worximity is deeply committed to the philosophies of Continuous Improvement and Lean Manufacturing in food manufacturing. Using our IoT technology we provide company wide visibility into the statistics that matter to manufacturers and accelerate TTV (Time to Value) of investments in company culture and training to achieve outstanding productivity.

 

Want to learn more?
Download the ebook
Related blog articles

Related articles

Back to the blog
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
4
Apr 2018

See Continuous Improvements in 3 Steps with a Connected Factory

English
6
Jun 2018

How to identify reject types and improve OEE

English
27
Feb 2018

How lean management can prevent this costly IIoT mistake

English

Related articles

Back to the blog
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
28
Jun 2023

Investing in Industry 4.0: It’s now more important than ever for food & beverage manufacturers of all sizes

Faced with challenges that include labor and raw material shortages, tightened regulations ,and skyrocketing costs, companies like you are struggling to produce and price products to meet the demands of increasingly cost-conscious consumers and anxious stakeholders alike.

English
27
Jun 2023

Au-delà des chiffres : maximiser le retour sur investissement dans le secteur manufacturier grâce à l'analyse de données

L'intelligence des données provient de chiffres bruts. Ces informations doivent être analysées et traduites en actions ayant un impact sur l'entreprise. Mais avec des données qui s'accumulent plus vite qu'elles ne peuvent être transformées en analyses de données manufacturières, les entreprises ratent des opportunités.

French
27
Jun 2023

Going Beyond the Numbers: Maximizing ROI with Data Analytics in Manufacturing

Technology has given rise to data – reams of it. In fact, in today’s digital environment there is more data available to manufacturers than in all of history combined. Yet for many manufacturers big data is a big problem.

English