1 Aug
2018

3 Factors to Consider When Choosing a Monitoring Solution

When looking at IoT and smart factory monitoring solutions for your food and beverage factory, consider factors that will be the most suitable to your factory's needs, set-up, and conditions. Here are 3 factors to consider.

Industry 4.0
Machine Monitoring
Smart Factory
IIoT
3 Factors to Consider When Choosing a Monitoring Solution

When looking at smart factory monitoring and IoT solutions for your food and beverage factory, consider factors that will be the most suitable to your factory's needs, set-up, and conditions. No matter what, you want to spend more time on what matters: making better solutions. In the article, "Machine Monitoring and Analytics as a Path to Smart Manufacturing," Julie Fraser writes about industry insights and approaches that will make a difference.

Here are 3 factors to consider when choosing a monitoring solution

1. Scope 
 

If your factory has a well-established Enterprise Resource Planning (ERP) system in place, by adding a more focused machine monitoring system or Manufacturing Execution System (MES), you'll have a set-up that can be coordinated throughout your entire factory.   


But, if it's a considerable challenge to coordinate applications throughout your factory, implementing an ERP which includes MES and machine monitoring will offer reach and range of monitoring.

oee-machine-mointoring

Example: Overall Equipment Effectiveness is a standard for measuring overall efficiency of your equipment and a metric for identifying key problems and potential improvements that could be made. Track in real-time.

 

2. Smart & IoT 

 
If the path to smart manufacturing and IoT is on  your mind, consider whether you want a traditional on-premises solution or whether a cloud-based or SaaS solution such as machine metrics or propulsion would provide you the learning and IoT foundation you need to feel confident.

Smart manufacturing and IoT are not one-size-fits-all solutions. If you are considering these tools and methods, there are a variety of monitoring solutions to fit your needs and to move forward with confidence. Solutions can take a more traditional on-site form, be cloud-based, or SaaS based (e.g. Machine metrics or propulsion.)  

 
 

 

 

3. Report vs. Predict 

 

Some of the most powerful insights gained from machine monitoring comes from predictive analytics—data is drawn from backward-looking reporting and system insights. The ability to predict system events is key to continuous improvement.  

 

Want to learn more?
Download the ebook
Related blog articles

Related articles

Back to the blog
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
10
Oct 2019

Le TRG et la rentabilité

French
27
Nov 2019

L'IIoT et l'industrie manufacturière - tendances à l'aube de l'an 2020

French
14
Feb 2024

Key Differences Between Discrete and Process Manufacturing Software

English

Related articles

Back to the blog
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
4
Apr 2018

McKinsey - An executive’s guide to AI

McKinsey publised an online executive's guide to AI to cover the highlights of artificial intelligence: machine learning and deep learning.

English
9
May 2018

Manufacturing Brands That Make Use of Artificial Intelligence

Even manufacturing brands use Artificial Intelligence in their operations. Keep reading to know a few of these brands and how they have implemented the use of Artificial Intelligence.

English
15
Jan 2019

Robots and Artificial Intelligence Taking Over the Food Industry

Important changes such as robots and the use of artificial intelligence are being introduced to the food supply chain to improve its efficiency. Learn more about other benefits related to the implementation of these technologies.

English