14 Aug
2018

Top 3 des compétences d'un scientifique des données

Découvrez les principales compétences d'un scientifique des données!

Human Resources
Industry 4.0
Top 3 des compétences d'un scientifique des données

De nos jours, plusieurs technologies permettent aux entreprises d’obtenir une grande quantité de données. Le retour sur investissement de ces technologies dépend en grande partie des actions qui sont prises à partir des données recueillies. Les entreprises sont en transformation et sentent de plus en plus la nécessité de baser leurs décisions sur des données solides et fiables. Vous ne serez donc pas surpris d’apprendre que le rôle de scientifique des données est un rôle de plus en plus en demande au sein des organisations.

Qu’est-ce qu’un scientifique des données?

Le rôle de scientifique des données est de gérer, analyser et interpréter les données, le tout en tenant compte de la réalité organisationnelle, ce qui nécessite un sens des affaires très développé.

3 champs de compétences fondamentaux d’un scientifique des données

Compétences techniques:

Le scientifique des données doit posséder des connaissances en programmation avec des langages tels que R ou Python ainsi que des connaissances en architecture informatique et bases de données. Il doit être en mesure de s’adapter è différents environnements informatiques et avoir une agilité intellectuelle lui permettant d’apprendre et d’adopter constamment de nouvelles méthodes. Il doit maîtriser la manipulation des données et être à l’aise avec plusieurs structures de données différentes.

Compétences d’analyse:

Le rôle de scientifique des données nécessite d’être expert en résolution de problèmes complexes. Dans cette catégorie de compétences se retrouvent des compétences en statistiques avancées, apprentissage machine, mathématiques avancées, modélisation, simulations, intelligence artificielle, etc. De façon générale, les domaines d’études en sciences, technologie, ingénierie, mathématiques et physiques permettent de développer les compétences d’analyse recherchées et permettent de pratiquer la résolution de problèmes scientifiques.

Compétences d’affaires:

Le scientifique des données doit absolument comprendre l’environnement corporatif dans lequel les données évoluent. Dans le domaine de la science des données, les projets réussis sont ceux qui sont basés sur une situation précise et qui se terminent par des solutions concrètes pouvant être intégrées dans l’environnement de travail.

Les scientifiques des données sont en demande plus que jamais. Il ne faut pas perdre de vue toutefois, que leur succès nécessite d’abord et avant tout des données fiables et en quantité suffisante. Des solutions de suivi de production en temps réel ou d’analytiques de données sont définitivement des avenues à considérer!

Source: Data Scientist Skill Set, Data Science Central.

Want to learn more?
Download the ebook
Related blog articles

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
5
Nov 2019

TRG - Disponibilité, fiabilité et capacité d'entretien (maintenabilité)

French
5
Mars 2018

5 Ways to Prepare your Automation System for IIoT

English
19
Déc. 2023

Un exemple démontrant comment calculer le TRG dans le secteur manufacturier

French

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
20
Fév 2024

Comment les entreprises ont mis en oeuvre les 14 points de Deming dans le secteur manufacturier

Les 14 points de gestion de Deming ainsi que la suite d'outils de performance de Worximity stimulent l'amélioration et l'innovation dans le secteur manufacturier.

French
16
Fév 2024

Principales différences entre la fabrication discrète et la production par processus

Découvrez le rôle essentiel que joue votre logiciel dans la fabrication discrète et dans la production par processus.

French
23
Janvier 2024

Optimisation des opérations à l'échelle de l'entreprise : analyse de données dans l'industrie manufacturière avec l’aide de Worximity

Découvrez comment Worximity transforme les opérations manufacturières en exploitant l'analyse des données en temps réel, apportant efficacité et innovation à l'Industrie 4.0 tout en responsabilisant les départements au-delà de la gestion de la production.

French