6 Jun
2018

Should you use IIot to log rejects?

Using an autonomous measuring and logging system for rejects will safe time, materials, money, and improve the overall efficiency of the production process.

Lean Manufacturing
Faut-il utiliser IIot pour enregistrer les rejets ?

While noticing where, when, and how rejects occur are all important considerations to make when trying to improve production efficiency, the tools used to measure and log rejects are just as important.

 

Worximity_TC2_in_hand_machine_monitoring

One method of measuring and logging rejects is with a quality control worker who manually checks the product for quality and records data by hand, with paper or via manual entry in a computer. While this method works, it wastes time, labor, and is costly in the long run.

Measuring the parts via autonomous technology, by sensor or automatic micrometer for example, is a much faster and more accurate quality control check, as it is not subjected to human error. Besides improving accuracy, an autonomous reject system will also improve insight into the problem, potentially taking preventative action before the problem occurs. With this type of system, more “checkpoints” can be created (perhaps even one after every manufacturing process) allowing problems to be found as they arise. Autonomous data entry will also save labor, as an employee no longer has to do it on the clock.

 

While the design of these systems are largely industry and plant specific, converting and using an autonomous measuring and logging system for rejects will safe time, materials, money, and improve the overall efficiency of the production process.

 

Want to learn more?
Download the ebook
Related blog articles

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
18
Nov 2019

Evaluate Your Lean Manufacturing Software

English
29
Août 2019

10 Tools of an Efficient Operations Manager

English
2
Déc 2019

Common Lean Manufacturing Mistakes Your Company Needs to Avoid

English

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
23
Janvier 2024

Optimizing Company-wide Operations: Data Analytics in the Manufacturing Industry With Worximity

Explore how Worximity is reshaping manufacturing by harnessing real-time data analytics, bringing efficiency and innovation to Industry 4.0 while empowering departments beyond production management.

English
9
Janvier 2024

Manufacturing Trends to Lookout for in 2024

As we look at manufacturing trends for 2024, pressure to stay on top of current trends and maintain competitiveness are at an all-time high

English
21
Déc. 2023

Les coûts multiples liés aux problèmes de contrôle de la qualité

Mesurer les rejets et les défauts de qualité est essentiel dans un contexte d’initiatives de production Lean et d'amélioration continue. Découvrez les principaux coûts liés aux rejets de qualité en lisant cet article.

French