1 Aug
2018

3 Factors to Consider When Choosing a Monitoring Solution

When looking at IoT and smart factory monitoring solutions for your food and beverage factory, consider factors that will be the most suitable to your factory's needs, set-up, and conditions. Here are 3 factors to consider.

Industry 4.0
Machine Monitoring
Smart Factory
IIoT
3 facteurs à prendre en compte lors du choix d'une solution de monitoring

When looking at smart factory monitoring and IoT solutions for your food and beverage factory, consider factors that will be the most suitable to your factory's needs, set-up, and conditions. No matter what, you want to spend more time on what matters: making better solutions. In the article, "Machine Monitoring and Analytics as a Path to Smart Manufacturing," Julie Fraser writes about industry insights and approaches that will make a difference.

Here are 3 factors to consider when choosing a monitoring solution

1. Scope 
 

If your factory has a well-established Enterprise Resource Planning (ERP) system in place, by adding a more focused machine monitoring system or Manufacturing Execution System (MES), you'll have a set-up that can be coordinated throughout your entire factory.   


But, if it's a considerable challenge to coordinate applications throughout your factory, implementing an ERP which includes MES and machine monitoring will offer reach and range of monitoring.

oee-machine-mointoring

Example: Overall Equipment Effectiveness is a standard for measuring overall efficiency of your equipment and a metric for identifying key problems and potential improvements that could be made. Track in real-time.

 

2. Smart & IoT 

 
If the path to smart manufacturing and IoT is on  your mind, consider whether you want a traditional on-premises solution or whether a cloud-based or SaaS solution such as machine metrics or propulsion would provide you the learning and IoT foundation you need to feel confident.

Smart manufacturing and IoT are not one-size-fits-all solutions. If you are considering these tools and methods, there are a variety of monitoring solutions to fit your needs and to move forward with confidence. Solutions can take a more traditional on-site form, be cloud-based, or SaaS based (e.g. Machine metrics or propulsion.)  

 
 

 

 

3. Report vs. Predict 

 

Some of the most powerful insights gained from machine monitoring comes from predictive analytics—data is drawn from backward-looking reporting and system insights. The ability to predict system events is key to continuous improvement.  

 

Want to learn more?
Download the ebook
Related blog articles

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
26
Mars 2019

5 Piliers d'une transformation réussie vers l'IA

French
29
Mars 2019

Make Better Decisions with Machine Monitoring

English
10
Avril 2019

L'industrie 4.0 et l'IIoT dans le processus de production laitière

French

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
19
Nov 2019

Types de gaspillages dans le lean manufacturing - le gaspillage résultant des mouvements et des gestes inutiles

Dans le lean manufacturing, le gaspillage dû aux mouvements inutiles survient en usine et en bureaux. Voici des exemples de ce gaspillage et comment y remédier.

French
11
Juillet 2019

Le lien entre nouvelles technologies et emploi est positif

La Presse+ partage les conclusions d'un rapport de l'Institut Fraser qui souligne que l'intelligence artificielle aura des impacts positifs sur l'emploi.

French
31
Mai 2018

5 premiers pas vers l'intelligence artificielle

Un article du Harvard Business Review propose 5 premiers pas pour les entreprises qui souhaitent intégrer l'intelligence artificielle à leur opérations ou leurs produits.

French