16 May
2019

Top 3 Skills of a Data Scientist

Discover the main skills of a data scientist!

Human Resources
Industry 4.0
Smart Factory
Top 3 Skills of a Data Scientist

data analyticsNowadays, several technologies allow companies to obtain a large amount of data. The return on investment of these technologies depends largely on the actions that are taken from the data collected. Businesses are changing and increasingly feel the need to base their decisions on solid, reliable data. You will not be surprised to learn that the role of a data scientist is a role increasingly in demand within organizations.

What is a data scientist?


The role of data scientist is to manage, analyze and interpret the data, while taking into account the organizational reality, which requires a very developed business sense.

3 fundamental areas of expertise of a data scientist:

Technical competencies:

The data scientist must have programming knowledge with languages such as R or Python as well as knowledge of computer architecture and databases. He or she must be able to adapt to different IT environments and have intellectual agility to learn and constantly adopt new methods. This person must master data manipulation and be comfortable with several different data structures.

Analytical competencies:

The role of data scientists requires to be an expert in solving complex problems. In this category are skills in advanced statistics, machine learning, advanced mathematics, modeling, simulations, artificial intelligence, etc. In general, the fields of study in science, technology, engineering, mathematics and physics make it possible to develop the analytical skills sought and make it possible to practice solving scientific problems.

Business competencies:

The data scientist must understand the corporate environment in which the data evolves. In the field of data science, successful projects are those that are based on a specific situation and that end with concrete solutions that can be integrated into the work environment.

 

 

Data scientists are in demand more than ever. It must be remembered, however, that their success requires first and foremost reliable and sufficient data. Real-time production tracking solutions or data analytics are definitely avenues to consider!

 

Want to learn more?
Download the ebook
Related blog articles

Related articles

Back to the blog
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
26
Sep 2017

Être plus productif au quotidien avec l’IIoT

French
17
Oct 2017

Gains de 10% en efficacité dans l'industrie agroalimentaire

French
27
Sep 2017

Les emplois du futur

French

Related articles

Back to the blog
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
23
May 2024

Exemples de Lean Manufacturing provenant des principaux leaders de l’industrie

La mise en œuvre du Lean Manufacturing peut vous apparaître comme un défi colossal. En regardant ce que les meilleurs ont accompli en appliquant les principes du Lean Manufacturing, vous serez à la fois inspirés et motivés.

French
25
Apr 2024

How to Analyze Throughput Rate

Throughput rates are an important measure of factory performance. Not only does throughput indicate whether the factory can meet customer demand, but it's also an indicator of overall plant efficiency.

English
15
Apr 2024

Les meilleurs outils d’amélioration continue pour les entreprises manufacturières œuvrant dans le secteur agroalimentaire

Dans le paysage concurrentiel du secteur agroalimentaire, la mise en œuvre de méthodologies d'amélioration continue n'est pas seulement un choix : c'est une nécessité pour rester compétitif.

French