13 Aug
2018

What are the Top AI Trends of 2018?

Hardware manufacturing company Lanner put together a list of the most exciting topics in AI in 2018. Think: Decision-making in real-time, quality, predictive ordering and smart opportunity assessment.

Artificial Intelligence
Industry 4.0
Smart Factory
IIoT
Quelles sont les principales tendances en matière d'IA en 2018 ?

Artificial Intelligence (AI) is a complicated and popular topic across multiple industries as innovations throughout the field make leaps and strides. The team at hardware manufacturing company Lanner put together a list of what the most exciting topics in AI are in 2018. See the list below and read more about some key benefits of AI to manufacturers.

Lanner's Top 10 AI Trends in 2018:


1. Machine learning: Machine learning (ML) is the branch of artificial intelligence that focuses on equipping machines with the ability to learn without human intervention or programming.

2. Deep neural networks & deep learning theory: Deep neural networks (DNNs) are artificial neural networks that contain multiple hidden layers between their input and output layers, occasionally referred to as “stacked” neural networks. Deep learning is the branch of machine learning that deals with learning data representations instead of task specific algorithms.

3. Machine vision: With artificial intelligence, machine vision systems will be equipped with the ability to learn from their experiences. 

4. Edge AI: One of the most interesting differences between human brains and artificial intelligence tools is the location the “processing” takes place. With AI, the majority of processing and analysis is done in cloud servers rather than on edge devices due to the large data and computing power they require.

5. Customer interaction: According to Gartner, over 80% of all customer interactions will be handles by an AI by the year 2020.

 

 

 

 

6. Big data & analytics: AI’s ability to manage and interpret vast volumes of data much quicker and much more accurately than human beings is what sets it aside as a potentially revolutionary technology. 

7. Natural language recognition: One of the biggest challenges for artificial intelligence technologies has been interpreting intent from the natural language human beings use.

8. The Internet of Intelligent Things: The widespread adoption of AI technologies alongside the continuing expansion of the Internet of Things will begin to build upon the technological foundations laid by previous associated technologies. 

9. AI as a workplace norm: With a growing product base and many more innovations lingering on the horizon, 2018 could also be the year artificial intelligence becomes an everyday technology for a large number of businesses and organizations. 

10. Ethics & responsibility: As the computational power and responsibilities given to AI grow, more attention will need to be given to the ethical considerations of artificial intelligence.

 

Click to enlarge

AI Trends for 2018

 

Infographic: lanner-america.com

Want to learn more?
Download the ebook
Related blog articles

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
20
Déc 2018

A New Look on the Food Processing Industry with AI

English
29
Oct. 2021

Your Factory's Digital Manufacturing Roadmap: A 5+ Item Checklist!

English
4
Juillet 2018

The 3 Central Tasks of Data-Driven Transformation

English

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
26
Août 2019

6 Impacts of a Successful Continuous Improvement Project in Food Manufacturing

Food Manufacturers have unique challenges including a need for safety and thin profit margins. Learn how CI can impact your food business.

English
20
Fév 2024

How Companies Have Applied Deming's 14 Points in Manufacturing

Deming's 14 points of management along with Worximity's suite of performance tools drive manufacturing improvement and innovation.

English
23
Août 2019

Continuous Improvement in Manufacturing: Food Industry

Continuous improvement is a method employed to identify opportunities for streamlining work and reducing waste, vital for the food industry.

English