2 Oct
2018

Which technologies will power your business tomorrow?

Philippe Vannier Executive Vice President Big Data & Security Solutions and Group CTO, Atos wrote a very interesting piece on key 2020+ technologies set to impact manufacturers in the coming years.

Industry 4.0
Quelles sont les technologies qui alimenteront votre entreprise demain ?

Philippe Vannier Executive Vice President Big Data & Security Solutions and Group CTO, Atos wrote a very interesting piece on key 2020+ technologies set to impact manufacturers in the coming years:

He summarized the technologies in this intuitive graph:

Screen Shot 2018-10-02 at 14.03.12

He also briefly described each of the following trends we briefly summarized below:

  • 3D Printing - the inexpensive approach to manufacturing 3D objects, materializing them from virtual designs created using CAD (Computer Added Aided Design) programs.
  • 5G - the next generation of communication networks and services.
  • Ambient Working Experience - free flow across devices and  the portability of the user persona across multiple create and consume device types.
  • Autonomous Vehicles - the interaction of transportation vehicles and robotic capabilities, such as environmental sensors, context awareness and autonomous decision-making using Artificial Intelligence.
  • Biocomputer - computers that use biological materials such as DNA and proteins to perform computational calculations that involve the storage, retrieving and processing of data.
  • Blockchain - a distributed database that uses cryptographic techniques to store a growing list of records – or blocks – sequentially. 
  • Brain-Computer Interface - direct communication pathway between the brain and an external device based on neural activity generated by the brain.
  • Cognitive Computing - integration of algorithms and methods from diverse fields such as Artificial Intelligence (AI), machine learning, Natural Language Processing (NLP) and knowledge representation to enhance human performance on cognitive tasks.
  • Computing memory - represents a new approach to solving the limitations of classical (Von Neumann) computing architectures. In this model, certain computational tasks are performed in place in a specialized memory unit called computational memory.
  • Containers - provide users and applications running inside them with the illusion and experience of running on their own dedicated machine.
  • Context-Aware Computing - systems collect and store diverse data, then leverage analytics to deduce context from the interactions among the data before triggering actions based on that contextual information.
  • Continuous Authentication - exploits behavioral (passive) biometrics (a form of biometrics that exploits dynamic human characteristics) to establish that an individual is who they say they are ( voice, typing style, mouse use and walking pace).
  • Deep Learning - a branch of machine learning with its roots in neural networks where multi-layered neural network algorithms attempt to model high-level abstractions in data.
  • DevOps - a philosophy for how to build and operate software that encourages teams to focus on business value, work collaboratively, deploy software more frequently in smaller increments and build reliable solutions. 
  • Digital Twin - a digital replica of a physical asset, process, system or service across its lifecycle
  • Edge Computing - moves applications, data and services away from the centralized model of Cloud computing to a more decentralized model that lies at the extremes of the network.
  • Exascale - HighPerformance Computing (HPC) systems capable of at least one billion billion calculations per second (one exaFLOPS) — a thousand-fold increase over today’s petascale supercomputers
  • H/W Accelerators 2.0 - highly specialized computing devices targeting a narrow field of computing. They can be classified roughly into three categories: programmable hardware (like GPUs), Field Programmable Gate Arrays (FPGA) and fixed-function hardware (like Google Tensor Processing Unit). 
  • Immersive Experience - encompass a wide range of devices,including virtual reality (VR) – digital simulations of real-world environments; 3D displays – display devices that create the perception of depth; haptic devices – which add the sensation of touch; and holographic user interfaces – laser-based volumetric displays where users interact with holographic images.
  • Insight Platforms - the third generation of business analytics platforms, after the Business Intelligence and Big Data phases
  • Intelligent Automation - Robotic Process Automation (RPA) or knowledgebased and/or AI-supported automation solutions that are transforming the existing automation solutions.
  • Internet of Things - ubiquitous communication networks that effectively captures, manages and leverages data from billions of real-life objects and physical activities.
  • Invisible Computer - the rise of technologies like speech recognition, chatbots, XR (AR/VR/ MR) and advanced machine learning,  devices that deeply and naturally integrate into our everyday lives.
  • Location- Based Services  - Geographical information systems (GIS) capture, store, analyze and display information referenced according to its geographical location.
  • LPWAN - LowPower Wide-Area Network (LPWAN) wireless communication technology has a low power requirement and a long range, but a low data rate.
  • Multi-Cloud - models with diverse, decentralized and autonomic management and hybrid Cloud models that cross boundaries between internal and external Cloud services or between public, private and community providers
  • Natural User Interfaces - systems designed to make human-computer interaction feel as natural as possible.
  • Neuromorphic Computing - systems integrate electronic analog circuits with digital ones to mimic neuro-biological architectures similar to those of nervous systems of living beings.
  • Open Source Hardware - extends the ideas and methodologies popularized in open source software development to hardware development.
  • Privacy-Enhancing Technologies - technologies involved in protecting or masking personal data (whether employees, customers or citizens) to achieve compliance with data protection legislation and sustain customers’ trusted relationships
  • Quantum Computing - uses quantum-mechanical phenomena to execute operations on data
  • QUIC -  provides multiplexing and flow control equivalent to HTTP/2; security
  • Real-time Prescriptive Analytics - advanced form of business analytics that helps decision-makers determine the best course of action among various choices, given known parameters. 
  • SDx - Software-defined anything/everything (SDx) is an approach that replaces legacy  with software running on commodity hardware platforms.
  • Self-Adaptive Security - relies on new generations of context-aware security technologies that dynamically adapt to threats.
  • Smart Contracts - digital peer-to-peer contracts written into lines of programming code.
  • Smart Machines - systems embedded with cognitive computing capabilities that are able to make decisions and solve problems without human intervention
  • Swarm Computing - combines network and Cloud capabilities to create on-demand, autonomic and decentralized computing.
  • Trusted Devices - rely on highsecurity design, hardened software and hardware, and intensive certification processes provided by trusted third parties.
  • Virtual Assistants - software agents that perform services or tasks on our behalf.
  • Wearable Computing - bracelets, headbands and helmets, contact glasses, earphones, globes, digital pens, smart clothing, jewelry and even tattoos.
  • WebRTC - open standard for Web Browser based Real-Time Communications and is supported by all major browser vendors, including Google Chrome, Mozilla Firefox, Microsoft Edge and Apple Safari.
  • Web-scale Computing - a large, distributed, grid computing environment that can scale-out efficiently as data volumes and workload demands increase in internet-size ways.
  • Wireless Power - transmission of electrical power without solid wires, using electromagnetic fields instead.

SOURCE: https://atos.net/content/mini-sites/look-out-2020/assets/pdf/ATOS_LOOK%20OUT_TECH%20TRENDS.pdf

Want to learn more?
Download the ebook
Related blog articles

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
10
Oct 2019

Le TRG et la rentabilité

French
18
Juin 2019

Becoming a Digital Champion in Industry 4.0

English
3
Oct 2019

TRG et les outils analytiques d'usine intelligente - un outil révolutionnaire pour l'industrie manufacturière

French

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
5
Avril 2021

The Latest Developments in Food Processing Software Solutions

Here are key developments companies need to adopt into their food processing software solutions.

English
23
Déc. 2021

The Real Cost of Inaction: How to Achieve Manufacturing Excellence at Your Factory

You can’t predict or prevent every factory misstep, but technology can get closer. Here is how to achieve manufacturing excellence.

English
18
Nov 2019

Transformation de la viande en utilisant les méthodes d'usine intelligente - Introduction #1

Comment améliorer les étapes dans certaines chaînes de valeur de la transformation de la viande en utilisant les méthodes d'usine intelligente.

French