17 Jul
2018

Where do food manufacturers begin the journey toward smart manufacturing?

Where do food manufacturers begin the journey toward smart manufacturing? This article focuses on cost control.

Food Manufacturing IIoT
Industry 4.0
Lean Manufacturing
Smart Factory
IIoT
Où les fabricants de produits alimentaires doivent-ils commencer leur voyage vers la fabrication intelligente ?

How can IIoT help the manufacturing industry?

According to Mark Nott, the VP of Sales at Hitachi Consulting, the manufacturing sector will be spending more money on IIoT technologies than any other sector between now and 2021. What is the biggest related priority on the horizon? Managing cost control. Nott says smart manufacturing can "create value by controlling costs in three ways:"

  • Predicting and preventing downtime,
  • Predicting and preventing bottlenecks,
  • Predicting and preventing defects. 


Setting up a smart factory-where to begin?

With all of the information available online and in the media about digitization in the manufacturing and other industries, how does one distinguish the valuable information from the ineffectual? Consider cost control approaches such as monitoring giveaway and overproduction, gaining real-time production insights or monitoring downtime.

Nott and his colleague Greg Kinsey, VP of Industrial Solutions & Innovation at Hitachi Vantara put together this list of phases to conceptualize the process.

Level 1: Visualization 

The first phase is getting some basic digitization on the shop floor. This might mean installing cameras or microphones or other kinds of sensors to start to visualize what is happening in operations  

Level 2: Integration 

Companies then move up to the point where they can make sense of the data in an integrated way so that the upstream and the downstream parts of the process can begin working more hand  in hand. 

Level 3: Analysis 

At this level, companies improve control over factory processes through analysis of historical data as well as descriptive analysis. Companies can understand what’s happening in a factory at any given moment and manage processes more effectively.  

Level 4: Predictive 

Predictive analytics can unlock a great deal of value—for example, alerting companies  that, at current course and speed, bottlenecks and quality problems are likely to arise.  

Level 5: Prescriptive 

Here, not only do technologies predict what will happen, they will also provide suggestions or prescriptions of what to do to minimize the negative impact of the event.  

Level 6: Symbiotic

The final and most advanced stage is a factory that has a high level of intelligence built into the systems. Using artificial intelligence, the factory can be self-healing and self-adjusting.

 

Source + read the whole article 

Want to learn more?
Download the ebook
Related blog articles

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
23
mai 2024

Exemples de Lean Manufacturing provenant des principaux leaders de l’industrie

French
9
Janvier 2024

Manufacturing Trends to Lookout for in 2024

English
16
Oct. 2023

The Synergy Between Lean Manufacturing and OEE Monitoring

English

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
25
Avril 2024

How to Analyze Throughput Rate

Throughput rates are an important measure of factory performance. Not only does throughput indicate whether the factory can meet customer demand, but it's also an indicator of overall plant efficiency.

English
15
Avril 2024

Les meilleurs outils d’amélioration continue pour les entreprises manufacturières œuvrant dans le secteur agroalimentaire

Dans le paysage concurrentiel du secteur agroalimentaire, la mise en œuvre de méthodologies d'amélioration continue n'est pas seulement un choix : c'est une nécessité pour rester compétitif.

French
11
Avril 2024

Votre guide en matière de contrôle statistique du processus (CSP)

En tant qu’entreprise manufacturière, il est essentiel de comprendre le contrôle statistique du processus pour survivre et prospérer dans l’environnement hyper-compétitif d’aujourd’hui.

French