7 Sep
2018

Tracking and Systemizing with Continuous Improvement (CI)

A 2015 report by the NCBI examined how various methods of CI have been applied, and how they have the potential to cross over to different markets.

Continuous Improvement
Lean Manufacturing
Suivi et systématisation de l'amélioration continue (AC)

Continuous Improvement is one of the potent buzzwords currently being tossed around the manufacturing world, and for good reason. By implementing, adapting, and creating frameworks to measure productivity and loss, factories can see huge improvements to their workflow, and positively change company culture. The hard part is choosing what practices to choose because, CI isn’t a specific set of tools and techniques, but rather a huge banner. This latitude opens the gates for companies to utilize the tools that work best for them, and offers the opportunities to adapt practices from other industries.

A 2015 report by the NCBI examined how various methods of CI have been applied, and how they have the potential to cross over to different markets.

Here are our takeaways with respect to the manufacturing industry:

Lean Methodology

Originally derived from the Toyota Production System (TPS), the concept of Lean methodologies can be reduced to one basic idea: do not waste. Here waste is defined as any action that does not actively add customer-defined value. This means redundant processes, unused human capital, and even machine maintenance. The Lean system focuses on improving the workflows, transitions, and processes which make up the value stream, and thoroughly understanding it to root out inefficiencies. This overhead view makes the system ideal for changing groups of processes rather than planning single-process projects on the supply chain.

Checklists and Communication

Another base-level tactic in the CI toolbox is instituting protocols to regulate the day-to-day operations of a plant, and to create a standard of communication between employees. Even simple pen and paper forms vastly improve safety, and provide important insights to improve productivity. Six Sigma’s method of Statistical Process Control is the definitive example of this idea. By tracking variations in production, a factory can quickly detect errors and change minute details of production to increase efficiency.

The commercial aviation industry also has a great example of using checklists to regulate processes with Crew Resource Management (CRM). CRM brings together the complicated and interconnected systems of an airport through checklists and communication training. By enforcing a single standard that all parts of the system must follow, the aviation industry dropped the number of fatalities from 7-per-million departures in the 1970’s to less than one per million departures in 2005,(Savage, 2013) and that’s with an exponential increase in worldwide air travel. Needless to say, there are many ways standardized communications protocols can be instituted in companies not only to improve productivity, but also to ensure worker and machine safety.

Rapid Prototyping

Finally, one of the most powerful and versatile systems in CI is the Plan-Do-Check-Act (PDCA) cycle, also known as the Deming Wheel. Versions of this framework are applied all over the CI landscape, including a variation in the Six Sigma orthodoxy. This system is essentially an action-oriented rapid prototype for manufacturing. Small, limited-impact changes are made, their effects are measured, and a decision is made whether to scale up or drop the program. Practiced consistently, and by trained teams, these improvements can add up to massive efficiency gains for a factory. Like all of the most basic functions of CI, it’s the simplicity that allows PDCA to adapt and create powerful change when implemented correctly.

 

Worximity is deeply committed to the philosophies of Continuous Improvement and Lean Manufacturing in food manufacturing. Using our IoT technology we provide company wide visibility into the statistics that matter to manufacturers and accelerate TTV (Time to Value) of investments in company culture and training to achieve outstanding productivity.

 

Want to learn more?
Download the ebook
Related blog articles

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
13
Janvier 2022

Types of Lean Waste and How to Eliminate Them Using Digital Manufacturing Software

English
3
Déc. 2021

What Is Lean Manufacturing and How Can It Improve Factory Production Quality?

English
30
Juillet 2021

How to Eliminate Rejects When Managing a Digital Factory

English

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
23
Janvier 2024

Optimizing Company-wide Operations: Data Analytics in the Manufacturing Industry With Worximity

Explore how Worximity is reshaping manufacturing by harnessing real-time data analytics, bringing efficiency and innovation to Industry 4.0 while empowering departments beyond production management.

English
9
Janvier 2024

Manufacturing Trends to Lookout for in 2024

As we look at manufacturing trends for 2024, pressure to stay on top of current trends and maintain competitiveness are at an all-time high

English
21
Déc. 2023

Les coûts multiples liés aux problèmes de contrôle de la qualité

Mesurer les rejets et les défauts de qualité est essentiel dans un contexte d’initiatives de production Lean et d'amélioration continue. Découvrez les principaux coûts liés aux rejets de qualité en lisant cet article.

French