16 May
2019

Top 3 Skills of a Data Scientist

Discover the main skills of a data scientist!

Human Resources
Industry 4.0
Smart Factory
Les 3 principales compétences d'un Data Scientist

data analyticsNowadays, several technologies allow companies to obtain a large amount of data. The return on investment of these technologies depends largely on the actions that are taken from the data collected. Businesses are changing and increasingly feel the need to base their decisions on solid, reliable data. You will not be surprised to learn that the role of a data scientist is a role increasingly in demand within organizations.

What is a data scientist?


The role of data scientist is to manage, analyze and interpret the data, while taking into account the organizational reality, which requires a very developed business sense.

3 fundamental areas of expertise of a data scientist:

Technical competencies:

The data scientist must have programming knowledge with languages such as R or Python as well as knowledge of computer architecture and databases. He or she must be able to adapt to different IT environments and have intellectual agility to learn and constantly adopt new methods. This person must master data manipulation and be comfortable with several different data structures.

Analytical competencies:

The role of data scientists requires to be an expert in solving complex problems. In this category are skills in advanced statistics, machine learning, advanced mathematics, modeling, simulations, artificial intelligence, etc. In general, the fields of study in science, technology, engineering, mathematics and physics make it possible to develop the analytical skills sought and make it possible to practice solving scientific problems.

Business competencies:

The data scientist must understand the corporate environment in which the data evolves. In the field of data science, successful projects are those that are based on a specific situation and that end with concrete solutions that can be integrated into the work environment.

 

 

Data scientists are in demand more than ever. It must be remembered, however, that their success requires first and foremost reliable and sufficient data. Real-time production tracking solutions or data analytics are definitely avenues to consider!

 

Want to learn more?
Download the ebook
Related blog articles

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
20
Juillet 2018

Monitoring and IIoT—It's All About People

English
10
Août 2018

Why Monitor Mixing Process? Deli Meat Processing Series Part 2

English
16
Juillet 2018

Video-Benefits of Industry 4.0 in beverage factories

English

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
23
Nov 2023

Pénuries de main-d'œuvre dans le secteur manufacturier - Comment le monitoring de la production peut aider

Alors que les pénuries de main-d’œuvre continuent d’entraîner des pertes substantielles dans le secteur manufacturier, il est temps de considérer le monitoring de la production comme l’un des outils permettant d’atténuer certaines pertes.

French
15
Nov 2023

Decoding the OEE Calculation: Translating OEE Metrics into Tangible Losses

The following OEE funnel is a great way to visualize how losses in availability, performance, and quality impact OEE and your throughput.

English
9
Nov 2023

Production Monitoring vs. MES: Choosing the Right Solution for Your Manufacturing Needs

Don't pay for what you don't need. Understand which software suits your needs best and unlock the potential of your manufacturing processes.

English