14 Aug
2018

Top 3 des compétences d'un scientifique des données

Découvrez les principales compétences d'un scientifique des données!

Human Resources
Industry 4.0
Top 3 des compétences d'un scientifique des données

De nos jours, plusieurs technologies permettent aux entreprises d’obtenir une grande quantité de données. Le retour sur investissement de ces technologies dépend en grande partie des actions qui sont prises à partir des données recueillies. Les entreprises sont en transformation et sentent de plus en plus la nécessité de baser leurs décisions sur des données solides et fiables. Vous ne serez donc pas surpris d’apprendre que le rôle de scientifique des données est un rôle de plus en plus en demande au sein des organisations.

Qu’est-ce qu’un scientifique des données?

Le rôle de scientifique des données est de gérer, analyser et interpréter les données, le tout en tenant compte de la réalité organisationnelle, ce qui nécessite un sens des affaires très développé.

3 champs de compétences fondamentaux d’un scientifique des données

Compétences techniques:

Le scientifique des données doit posséder des connaissances en programmation avec des langages tels que R ou Python ainsi que des connaissances en architecture informatique et bases de données. Il doit être en mesure de s’adapter è différents environnements informatiques et avoir une agilité intellectuelle lui permettant d’apprendre et d’adopter constamment de nouvelles méthodes. Il doit maîtriser la manipulation des données et être à l’aise avec plusieurs structures de données différentes.

Compétences d’analyse:

Le rôle de scientifique des données nécessite d’être expert en résolution de problèmes complexes. Dans cette catégorie de compétences se retrouvent des compétences en statistiques avancées, apprentissage machine, mathématiques avancées, modélisation, simulations, intelligence artificielle, etc. De façon générale, les domaines d’études en sciences, technologie, ingénierie, mathématiques et physiques permettent de développer les compétences d’analyse recherchées et permettent de pratiquer la résolution de problèmes scientifiques.

Compétences d’affaires:

Le scientifique des données doit absolument comprendre l’environnement corporatif dans lequel les données évoluent. Dans le domaine de la science des données, les projets réussis sont ceux qui sont basés sur une situation précise et qui se terminent par des solutions concrètes pouvant être intégrées dans l’environnement de travail.

Les scientifiques des données sont en demande plus que jamais. Il ne faut pas perdre de vue toutefois, que leur succès nécessite d’abord et avant tout des données fiables et en quantité suffisante. Des solutions de suivi de production en temps réel ou d’analytiques de données sont définitivement des avenues à considérer!

Source: Data Scientist Skill Set, Data Science Central.

Want to learn more?
Download the ebook
Related blog articles

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
8
Janvier 2019

What's Trending in 2019?

English
7
Août 2018

500 chefs de PME manufacturières du Québec se prononcent sur l'industrie 4.0

French
26
Mars 2018

Implementing Industry 4.0: How Smart Factory Manage Risks

English

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
7
Nov 2024

How Investing in Manufacturing Technology Helps Create Resilience

The right technology foundation enables streamlined operations, sharper insights, and a faster response to challenges. This article dives into why a tech-forward approach to manufacturing sets companies up to weather downturns—and emerge stronger

English
21
Oct 2024

Comment tirer parti des données pour accélérer l’amélioration continue des processus de fabrication

La technologie de monitoring de la production favorise l'amélioration continue des processus de fabrication, fournissant des insights précieux et des indicateurs clés de performance traçables. Découvrez comment démarrer.

French
16
Oct 2024

How to Leverage Data to Jumpstart Continuous Manufacturing Process Improvement

Production monitoring was made for continuous manufacturing process improvement, delivering valuable insights and trackable KPIs. Learn how to get started.

English