6 Jun
2018

Should you use IIot to log rejects?

Using an autonomous measuring and logging system for rejects will safe time, materials, money, and improve the overall efficiency of the production process.

Lean Manufacturing
Faut-il utiliser IIot pour enregistrer les rejets ?

While noticing where, when, and how rejects occur are all important considerations to make when trying to improve production efficiency, the tools used to measure and log rejects are just as important.

 

Worximity_TC2_in_hand_machine_monitoring

One method of measuring and logging rejects is with a quality control worker who manually checks the product for quality and records data by hand, with paper or via manual entry in a computer. While this method works, it wastes time, labor, and is costly in the long run.

Measuring the parts via autonomous technology, by sensor or automatic micrometer for example, is a much faster and more accurate quality control check, as it is not subjected to human error. Besides improving accuracy, an autonomous reject system will also improve insight into the problem, potentially taking preventative action before the problem occurs. With this type of system, more “checkpoints” can be created (perhaps even one after every manufacturing process) allowing problems to be found as they arise. Autonomous data entry will also save labor, as an employee no longer has to do it on the clock.

 

While the design of these systems are largely industry and plant specific, converting and using an autonomous measuring and logging system for rejects will safe time, materials, money, and improve the overall efficiency of the production process.

 

Want to learn more?
Download the ebook
Related blog articles

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
4
Juin 2018

4 aspects de l'industrie 4.0 qui bonifient l'approche "lean"

English
15
Janvier 2020

Changes You Can Make Right Now to Improve Industrial Meat Production

English
26
septembre 2019

L'apprentissage profond avancé - diagramme de points chauds en IA

French

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
16
Oct 2024

How to Leverage Data to Jumpstart Continuous Manufacturing Process Improvement

Production monitoring was made for continuous manufacturing process improvement, delivering valuable insights and trackable KPIs. Learn how to get started.

English
30
juillet 2024

Qu'est-ce que la cadence dans le secteur manufacturier

À l’aide d’exemples concrets et d’informations pratiques, découvrez pourquoi calculer et monitorer la cadence sont votre voie vers une production optimisée.

French
3
juillet 2024

L’industrie 4.0 : l'avenir de l'efficacité opérationnelle avec Worximity

French