6 Jun
2018

Should you use IIot to log rejects?

Using an autonomous measuring and logging system for rejects will safe time, materials, money, and improve the overall efficiency of the production process.

Lean Manufacturing
Faut-il utiliser IIot pour enregistrer les rejets ?

While noticing where, when, and how rejects occur are all important considerations to make when trying to improve production efficiency, the tools used to measure and log rejects are just as important.

 

Worximity_TC2_in_hand_machine_monitoring

One method of measuring and logging rejects is with a quality control worker who manually checks the product for quality and records data by hand, with paper or via manual entry in a computer. While this method works, it wastes time, labor, and is costly in the long run.

Measuring the parts via autonomous technology, by sensor or automatic micrometer for example, is a much faster and more accurate quality control check, as it is not subjected to human error. Besides improving accuracy, an autonomous reject system will also improve insight into the problem, potentially taking preventative action before the problem occurs. With this type of system, more “checkpoints” can be created (perhaps even one after every manufacturing process) allowing problems to be found as they arise. Autonomous data entry will also save labor, as an employee no longer has to do it on the clock.

 

While the design of these systems are largely industry and plant specific, converting and using an autonomous measuring and logging system for rejects will safe time, materials, money, and improve the overall efficiency of the production process.

 

Want to learn more?
Download the ebook
Related blog articles

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
4
Juin 2018

4 aspects de l'industrie 4.0 qui bonifient l'approche "lean"

English
15
Janvier 2020

Changes You Can Make Right Now to Improve Industrial Meat Production

English
26
septembre 2019

L'apprentissage profond avancé - diagramme de points chauds en IA

French

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
13
mars 2024

Engines of Manufacturing Efficiency: Machine Monitoring and OEE

Machine Monitoring and OEE (Overall Equipment Effectiveness) are effective at boosting overall efficiency, but what is the difference between them and what is best for your operations?

English
20
Fév 2024

Comment les entreprises ont mis en oeuvre les 14 points de Deming dans le secteur manufacturier

Les 14 points de gestion de Deming ainsi que la suite d'outils de performance de Worximity stimulent l'amélioration et l'innovation dans le secteur manufacturier.

French
16
Fév 2024

Principales différences entre la fabrication discrète et la production par processus

Découvrez le rôle essentiel que joue votre logiciel dans la fabrication discrète et dans la production par processus.

French