4 Jul
2018

The 3 Central Tasks of Data-Driven Transformation

BCG's cost-effective and evidently successful three-step approach addresses a timeline for digital transformation in companies across sectors. The approach begins with pilot projects of rapid digitization to a final data governance system leading to a full-fledged digital transformation.

Analytics
Industry 4.0
Les 3 tâches principales d'une transformation basée sur les données

 

 

Data-driven transformation has taken to drive change in public and social sectors. Such change has motivated most executives to find reliable ways to propel their companies into data-based futures. Along with motivation, fear to keep up with competitors and ensure survival of their businesses pushes CEOs to implement a focused, pragmatic, and agile approach to data transformation. Working with different industries, BCG has addressed this challenge and developed a cost-effective, sustainable, and progressive three-phase approach:

 

Worximity - Data driven transforamtion with Smart Factory technologies

1. Funding the journey 

Entails laying the foundation with rapid digitization efforts that address the basics of broader transformation and deliver returns that can fund later phases. The benefits of these pilot projects help to show how an example company can benefit from digitization in the long run.

2. Designing a company-wide transformation 

Focuses on optimizing performance through digitization. In this phase, companies should draw on wins from phase one and create a detailed roadmap for extending transformation to other areas of the enterprise. Additionally, identifying benchmarks to digitize functions and operations allows companies to prepare for a full-fledged digital transformation. In this phase, it is also helpful for the organization to start “industrializing” data analytics—using analytics as a resource for each operation.

3. Organizing for sustained performance 

Involves building long-term systems and working towards using new data-driven strategies. As the company continues to sketch its transformation roadmap, it should standardize data-based systems for an effective output. Finally, to ensure sustainability of adopting digital processes, companies should constantly encourage new ways to use data.

 

Data-Driven Transformation_ex02_tcm-156856

 

SOURCE:  https://www.bcg.com/fr-ca/publications/2017/digital-transformation-transformation-data-driven-transformation.aspx?linkId=52354074&redir=true

Want to learn more?
Download the ebook
Related blog articles

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
19
Juin 2019

5 First Steps Towards Artificial Intelligence

English
21
Août 2018

Five Pillars of a Successful AI-based Transformation

English
23
Juillet 2018

Monitor Overall Equipment Efficiency (OEE) with IIoT

English

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
23
Janvier 2024

Optimizing Company-wide Operations: Data Analytics in the Manufacturing Industry With Worximity

Explore how Worximity is reshaping manufacturing by harnessing real-time data analytics, bringing efficiency and innovation to Industry 4.0 while empowering departments beyond production management.

English
9
Janvier 2024

Manufacturing Trends to Lookout for in 2024

As we look at manufacturing trends for 2024, pressure to stay on top of current trends and maintain competitiveness are at an all-time high

English
21
Déc. 2023

Les coûts multiples liés aux problèmes de contrôle de la qualité

Mesurer les rejets et les défauts de qualité est essentiel dans un contexte d’initiatives de production Lean et d'amélioration continue. Découvrez les principaux coûts liés aux rejets de qualité en lisant cet article.

French