19 Dec
2018

Food Manufacturing 4.0: The Proof is in the Data

The food manufacturing industry is in the midst of a major data-driven shift, in which AI, APM and IIoT will play a crucial role to remain competitive.

Artificial Intelligence
Food Manufacturing IIoT
Industry 4.0
Fabrication de produits alimentaires 4.0 : La preuve par les données

With the arrival of Industry 4.0, many food manufacturers are exposed to pressures relating to increasing efficiencies all while reducing consumption. Executives are turning towards smart factory technologies such as artificial intelligence, asset performance management and industrial internet of things to better compete in their field that is undergoing a major disruption. With the help of algorithms, patterns can be identified in the behaviour of assets and future performance can be predicted with this data. From this, certain benefits can be derived such as cost savings, lower energy consumption, lengthened life of assets and improved overall efficiency.

 

Food manufacturers have an abundance of data at their disposal. IIoT is able to deliver significant meaningful information to companies choosing to implement such technologies to their processes. It contributes to modernizing industries that are lacking the proper tools to enhance their performance and require technological advancements to do so. IIoT technologies generate an immense amount of data and this number will only be ascending as companies incorporate more sensors and other devices to their factories to track various aspects of their production.

Moreover, with the data intelligence and predicted patterns extracted from AI tools, analysts will be able to make more enlightened decisions, improve the production's throughput as well as increase their revenue retention.

 

 

To learn more on the importance of data in food manufacturing, asset performance management and 4.0 technologies, click here.

Want to learn more?
Download the ebook
Related blog articles

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
30
Mai 2018

How to Get Started as a Developer in AI

English
6
Déc 2018

AI in Baking for Real-Time Predictions

English
15
Fév 2018

Harvard Business Review Article on Artificial Intelligence

English

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
10
Avril 2024

Définir la différence entre le temps de production et le temps de cycle

Le temps de cycle et le temps de production sont des indicateurs clés de la performance manufacturière. Découvrez ce que chacun signifie et comment les utiliser pour augmenter la productivité dans le cadre de votre processus de production.

French
13
mars 2024

Moteurs d’efficacité manufacturière : Monitoring des machines et du TRG

Le monitoring des machines et du TRG (taux de rendement global) sont efficaces pour améliorer l'efficacité globale, mais quelle est la différence entre eux et qu'est-ce qui est le mieux adapté à vos opérations?

French
13
mars 2024

Engines of Manufacturing Efficiency: Machine Monitoring and OEE

Machine Monitoring and OEE (Overall Equipment Effectiveness) are effective at boosting overall efficiency, but what is the difference between them and what is best for your operations?

English