13 Jul
2018

5 Examples of How IIoT is Changing Manufacturing

At Engineering.com, writer Isaac Maw asked in an article published last month, "What’s the Promise of the Connected Factory??" Here are five examples based on Maw's research and conversations with industry experts.

Food Manufacturing IIoT
Industry 4.0
Machine Monitoring
Smart Factory
IIoT
5 exemples de la façon dont l'IIoT modifie l'industrie manufacturière

In an article published last month writer Isaac Maw asked, "What’s the Promise of the Connected Factory??" Here are five examples based on Maw's research and conversations with industry experts.


Application 1: True Predictive Maintenance

Maw explains that "true predictive maintenance boils down to machine learning analysis, using as many sensor data points as possible, such as vibration, temperatures, currents and voltages." And that, "some machine learning algorithms can accurately predict failure as far as four months or more in advance." Further, he says, "the idea of predictive maintenance systems is to build accurate probability predictions on the data, rather than simply reporting it."


Application 2: Controlling an Operation Remotely

Citing the oil and gas industry, Maw highlights that "with connected devices on board an offshore platform, landlubber subject matter experts can communicate with offshore workers or even operate controls remotely."

 

 

 

 

 

 

 

Application 3: Improved Internal Collaboration

AVEVA is a multinational engineering and industrial IT company that works with Roy Hill Mining. At Royal Hill working with AVEVA, Maw writes, "Rather than allow each department to operate in silos, stifling collaboration and data access, the company utilized IIoT technology to maximize the collaboration and efficiency of their control center."

 

Application 4: Artificial Intelligence

Quoting Dr. Richard Soley, Executive Director of the Industrial Internet Consortium (IIC), Maw writes, "'If you don't understand what the data is, no machine learning system is going to fix it for you. You need trained personnel to interpret the input data, as well as the results,to get good use out of machine learning systems.'"



Application 5: Full Digital Transformation

"Digital transformation is more than going paperless or replacing a clipboard with an iPad. Digital Transformation refers to the revamping of a business model to incorporate new digital technologies."

Source + read the whole article.

 

 

 



 





 

Want to learn more?
Download the ebook
Related blog articles

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
23
Oct 2019

How To Know If You Are Receiving Reliable Data from Your Production Line

English
19
Avril 2021

Learn How to Improve Raw Materials Yield by Connecting Your Scales and Checkweighers

English
5
Fév 2019

Un Montréal à saveur d'intelligence artificielle

French

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
25
Juin 2019

Le temps est venu pour les manufacturiers canadiens d'adopter l'Industrie 4.0

Le temps est venu pour les manufacturiers canadiens de se lancer dans leur transformation 4.0 afin de tirer pleinement parti de cette révolution avant qu'il ne soit trop tard.

French
26
Mars 2019

5 Piliers d'une transformation réussie vers l'IA

Lorsqu'il s'agit d'utiliser l'IA et l'IIoT, considérez les cinq piliers pour réussir la transition basée sur l'IA et adopter des pratiques de travail plus légères et plus agiles.

French
29
Mars 2019

Make Better Decisions with Machine Monitoring

Manufacturers can make better decisions in their smart factory with real-time machine monitoring, allowing them to quickly react to downtime, performance gaps and fluctuating customer demand

English