13 Jul
2018

5 Examples of How IIoT is Changing Manufacturing

At Engineering.com, writer Isaac Maw asked in an article published last month, "What’s the Promise of the Connected Factory??" Here are five examples based on Maw's research and conversations with industry experts.

Food Manufacturing IIoT
Industry 4.0
Machine Monitoring
Smart Factory
IIoT
5 exemples de la façon dont l'IIoT modifie l'industrie manufacturière

In an article published last month writer Isaac Maw asked, "What’s the Promise of the Connected Factory??" Here are five examples based on Maw's research and conversations with industry experts.


Application 1: True Predictive Maintenance

Maw explains that "true predictive maintenance boils down to machine learning analysis, using as many sensor data points as possible, such as vibration, temperatures, currents and voltages." And that, "some machine learning algorithms can accurately predict failure as far as four months or more in advance." Further, he says, "the idea of predictive maintenance systems is to build accurate probability predictions on the data, rather than simply reporting it."


Application 2: Controlling an Operation Remotely

Citing the oil and gas industry, Maw highlights that "with connected devices on board an offshore platform, landlubber subject matter experts can communicate with offshore workers or even operate controls remotely."

 

 

 

 

 

 

 

Application 3: Improved Internal Collaboration

AVEVA is a multinational engineering and industrial IT company that works with Roy Hill Mining. At Royal Hill working with AVEVA, Maw writes, "Rather than allow each department to operate in silos, stifling collaboration and data access, the company utilized IIoT technology to maximize the collaboration and efficiency of their control center."

 

Application 4: Artificial Intelligence

Quoting Dr. Richard Soley, Executive Director of the Industrial Internet Consortium (IIC), Maw writes, "'If you don't understand what the data is, no machine learning system is going to fix it for you. You need trained personnel to interpret the input data, as well as the results,to get good use out of machine learning systems.'"



Application 5: Full Digital Transformation

"Digital transformation is more than going paperless or replacing a clipboard with an iPad. Digital Transformation refers to the revamping of a business model to incorporate new digital technologies."

Source + read the whole article.

 

 

 



 





 

Want to learn more?
Download the ebook
Related blog articles

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
4
Avril 2019

Comment l'IoT changera le futur de l'industrie alimentaire

French
11
Juin 2019

IIoT Platforms: A Value Driver for Equipment and Machinery

English
24
Juillet 2018

4 Reasons to Monitor Your Downtime

English

Articles connexes

Retour au blog
Nous vous remercions ! Votre demande a bien été reçue !
Oups ! Un problème s'est produit lors de l'envoi du formulaire.
29
Oct. 2021

Your Factory's Digital Manufacturing Roadmap: A 5+ Item Checklist!

Learn how to achieve your digital manufacturing goals by implementing an effective roadmap your team can easily follow.

English
4
Juillet 2018

The 3 Central Tasks of Data-Driven Transformation

BCG's cost-effective and evidently successful three-step approach addresses a timeline for digital transformation in companies across sectors. The approach begins with pilot projects of rapid digitization to a final data governance system leading to a full-fledged digital transformation.

English
31
Juillet 2018

3 Ways Monitoring & Analytics Maximizes Operations Performance

With a variety of conditions that have led to an increase in the cost of raw materials, in the cost of accessing raw materials and to a decrease in growth, manufacturers are looking for new solutions to maximize operations performance. Enter manufacturing monitoring and analytics

English