19 Jun
2019

5 First Steps Towards Artificial Intelligence

An article from the Harvard Business Review offers 5 first steps for companies that want to integrate artificial intelligence into their operations or products.

Artificial Intelligence
Industry 4.0
Smart Factory
Technology
IIoT
5 First Steps Towards Artificial Intelligence

Harvard Business Review has published an article: "The 5 Things Your AI Unit Needs to Do" which presents 5 most successful initiatives to start your shift to AI.

According to the European Center for Strategic Innovation (ECSI), which has surveyed the most successful companies in their implementation of AI units, the first steps to take are:

  1. Scouting AI technology, applications, and partners. Companies must have in-house AI hunters who will identify innovations, key players and emerging companies that may become partners.
  2. Experimenting with AI technology and applications. By undertaking pilot projects that adapt well to the company's concrete projects, it is possible to quickly determine the best approach to implement. These can be AI initiatives developed by an internal team or partnerships with startups that have innovations adapted to the reality of the company
  3. Supporting business units in applying AI technology. The goal of integrating AI into an organization is to align it perfectly with business and business models. Teams of data scientists must work closely with operators to ensure that the developed AI contributes to the better turnover of operations.
  4. Getting the entire organization to understand AI. For the power of artificial intelligence to be fully expressed, AI leaders of the company must educate the entire team to be part of this shift. Employees need to understand the value of AI and leaders must ensure to keep the exchanges simple and concrete so as not to dull the interest of their colleagues whom might be less experienced. To do so, the company oughts to take a stand on the issue of artificial intelligence and clearly communicate its orientations to its troops. The human resources department has to address the issue of training and updating skills to ensure that teams are equipped for the AI shift.
  5. Attracting and retaining talent. Some companies will make business acquisitions with AI expertise that is perfectly suited to their field, while others will set up an internal IA department and recruit new talent and offer training to their employees who wish to develop their potential. in this avenue. The competition will be fierce with the massive rise of AI and the positioning of Montreal as a global AI pole.

 

HBR suggests that each organization or AI-driven team should position themselves on this spider-graph based on their context, goals and constraints. 

HBR_Chart_your_company_AI_Capabilities

To read HBR's full article on the topic, click here

 

 

Want to learn more?
Download the ebook
Related blog articles

Related articles

Back to the blog
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
23
Oct 2019

How To Know If You Are Receiving Reliable Data from Your Production Line

English
19
Apr 2021

Learn How to Improve Raw Materials Yield by Connecting Your Scales and Checkweighers

English
20
Feb 2018

Worximity fera partie de la super grappe Scale AI

French

Related articles

Back to the blog
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
28
Jun 2023

Investing in Industry 4.0: It’s now more important than ever for food & beverage manufacturers of all sizes

Faced with challenges that include labor and raw material shortages, tightened regulations ,and skyrocketing costs, companies like you are struggling to produce and price products to meet the demands of increasingly cost-conscious consumers and anxious stakeholders alike.

English
27
Jun 2023

Au-delà des chiffres : maximiser le retour sur investissement dans le secteur manufacturier grâce à l'analyse de données

L'intelligence des données provient de chiffres bruts. Ces informations doivent être analysées et traduites en actions ayant un impact sur l'entreprise. Mais avec des données qui s'accumulent plus vite qu'elles ne peuvent être transformées en analyses de données manufacturières, les entreprises ratent des opportunités.

French
27
Jun 2023

Going Beyond the Numbers: Maximizing ROI with Data Analytics in Manufacturing

Technology has given rise to data – reams of it. In fact, in today’s digital environment there is more data available to manufacturers than in all of history combined. Yet for many manufacturers big data is a big problem.

English