13 Jul
2018

5 Examples of How IIoT is Changing Manufacturing

At Engineering.com, writer Isaac Maw asked in an article published last month, "What’s the Promise of the Connected Factory??" Here are five examples based on Maw's research and conversations with industry experts.

Food Manufacturing IIoT
Industry 4.0
Machine Monitoring
Smart Factory
IIoT
5 Examples of How IIoT is Changing Manufacturing

In an article published last month writer Isaac Maw asked, "What’s the Promise of the Connected Factory??" Here are five examples based on Maw's research and conversations with industry experts.


Application 1: True Predictive Maintenance

Maw explains that "true predictive maintenance boils down to machine learning analysis, using as many sensor data points as possible, such as vibration, temperatures, currents and voltages." And that, "some machine learning algorithms can accurately predict failure as far as four months or more in advance." Further, he says, "the idea of predictive maintenance systems is to build accurate probability predictions on the data, rather than simply reporting it."


Application 2: Controlling an Operation Remotely

Citing the oil and gas industry, Maw highlights that "with connected devices on board an offshore platform, landlubber subject matter experts can communicate with offshore workers or even operate controls remotely."

 

 

 

 

 

 

 

Application 3: Improved Internal Collaboration

AVEVA is a multinational engineering and industrial IT company that works with Roy Hill Mining. At Royal Hill working with AVEVA, Maw writes, "Rather than allow each department to operate in silos, stifling collaboration and data access, the company utilized IIoT technology to maximize the collaboration and efficiency of their control center."

 

Application 4: Artificial Intelligence

Quoting Dr. Richard Soley, Executive Director of the Industrial Internet Consortium (IIC), Maw writes, "'If you don't understand what the data is, no machine learning system is going to fix it for you. You need trained personnel to interpret the input data, as well as the results,to get good use out of machine learning systems.'"



Application 5: Full Digital Transformation

"Digital transformation is more than going paperless or replacing a clipboard with an iPad. Digital Transformation refers to the revamping of a business model to incorporate new digital technologies."

Source + read the whole article.

 

 

 



 





 

Want to learn more?
Download the ebook
Related blog articles

Related articles

Back to the blog
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
2
Jul 2019

Réussir dans l'Industrie 4.0 avec le leadership agile

French
30
May 2019

L'état des emplois dans l'industrie manufacturière à l'ère 4.0

French
22
May 2019

Quel type de leader 4.0 êtes-vous?

French

Related articles

Back to the blog
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
11
Apr 2024

Votre guide en matière de contrôle statistique du processus (CSP)

En tant qu’entreprise manufacturière, il est essentiel de comprendre le contrôle statistique du processus pour survivre et prospérer dans l’environnement hyper-compétitif d’aujourd’hui.

French
10
Apr 2024

Définir la différence entre le temps de production et le temps de cycle

Le temps de cycle et le temps de production sont des indicateurs clés de la performance manufacturière. Découvrez ce que chacun signifie et comment les utiliser pour augmenter la productivité dans le cadre de votre processus de production.

French
13
Mar 2024

Moteurs d’efficacité manufacturière : Monitoring des machines et du TRG

Le monitoring des machines et du TRG (taux de rendement global) sont efficaces pour améliorer l'efficacité globale, mais quelle est la différence entre eux et qu'est-ce qui est le mieux adapté à vos opérations?

French